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A study is made of unsteady natural convection in a square cavity of a fluid with a 
temperature-dependent viscosity. The flow is driven by instantaneously raising the 
temperature at one vertical wall and lowering the other. The viscosity variation is modeled 
by an exponential form, v/v0=exp ( -  CT). Two boundary conditions at the horizontal walls 
are used: insulating walls and highly conducting walls. Numerical solutions to the 
governing time-dependent equations at large reference Rayleigh numbers are acquired. The 
evolutions of the f low patterns and isotherms are presented under various parameter 
settings. When the viscosity variations are large, convective activities are facilitated in the 
region of low viscosity and suppressed in the region of high viscosity. The global impact is 
to enhance the f low and heat transfer in the cavity. A representative time history of the 
velocities is shown. A heatup time scale is corroborated. The transient behavior of the 
Nusselt number at the walls is scrutinized. During the transient phase, the effect of variable 
viscosity is such that the heat inflow to the cavity exceeds the heat outflow from the cavity. 
In effect, the cavity acts as a receiver of net heat input during the transient process. 

Keywords: transient convect ion;  variable-viscosity fluid; heat transfer node 

Introduction 

Unsteady natural convection in a cavity has drawn much 
interest lately. The flow and heat transfer characteristics for 
large Rayleigh numbers are of interest for a host of thermal 
engineering applications. One benchmark problem is to 
determine the flow and temperature fields in a rectangle when 
the temperature on one vertical wall is lowered and that on the 
other vertical wall is raised instantaneously. The resulting 
transient convective motions caused by the differential heating 
have been studied recently (see, e.g., Patterson and Imberger, 1 
Patterson, 2 Kimura and Bejan, 3 Ivey, 4 Hyun5'6). The flow is 
established by the density gradient perpendicular to the 
direction of gravity. As observed by Ostrach, 7 this type of 
"heated-by-sidewalls" convective flow occurs frequently in 
engineering applications as well as in environmental fluid 
systems. Also, this flow configuration encompasses the 
fundamental dynamic elements central to a proper 
understanding of the unsteady convective process. 

The majority of the previous work on unsteady internal 
convection has dealt with the situations in which the 
thermophysical properties of the fluid have been taken to be 
constant. It is well known that, in certain fluid systems of 
practical importance, the variation of viscosity with 
temperature is substantial, whereas other properties are far less 
sensitive to the flow conditions (see, e.g, BookerS). The effects of 
strong variations of viscosity on steady-state convection were 
studied by a few authors. Notably, Booker 8 and Torrance and 
Turcotte 9 considered steady convection in a horizontal layer 
heated from below; Yamasaki and Irvine 1° examined steady 
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convection in a vertical tube. These studies have demonstrated 
that the effects of variable viscosity significantly influence the 
flow and heat transfer characteristics. 

We intend in this paper to investigate the effects of a variable 
viscosity on unsteady natural convection in a differentially 
heated rectangle. To isolate the effects of a temperature- 
dependent viscosity, we adopt a square cavity. We seek 
numerical solutions to the governing Navier-Stokes equation. 
The variability of viscosity is modeled by a simple, yet widely 
exploited, formulae. 9 The comprehensive transient data of the 
flow and temperature fields is monitored for two cases of the 
thermal boundary condition at the horizontal walls: insulated 
walls and when the wall temperature varies linearly between the 
two vertical walls. 

We illuminate the details of the flow and thermal structures 
inside the cavity as the reference Rayleigh number and the 
temperature dependency of viscosity are varied. The effects of 
the reference Prandtl number and of the cavity aspect ratio will 
be treated in a subsequent paper. 

The key results are the time-dependent stream patterns 
and isotherms. The thermal stratification in the interior core will 
show different character as the horizontal wall boundary 
conditions are altered. The overall impact of a strongly variable 
viscosity on the global convective motions is scrutinized. Of 
particular interest are the transient variations of the Nusselt 
numbers on the boundary walls. With variable viscosity, the 
influence of convection is larger in the regions of low viscosity. 
The corresponding resulting variations in the heat transfer 
characteristics near the walls point to a possibility that, during 
the transient phase, there can be a net heat input to the cavity. 
The behavior of the mean Nusselt numbers on the walls is 
examined for various values of the external parameters. 
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The flow configuration of interest is shown in Figure 1. A square 
cavity is filled with an incompressible, Boussinesq-type, viscous 
fluid. Cartesian coordinates (x,y) are used, and the 
corresponding velocity components are denoted by (u,v). 
Initially, the fluid is motionless and at a uniform temperature 0 o. 
At the initial moment t = 0 ,  the temperature on the left vertical 
sidewall is lowered to 0c, and that in the right vertical sidewall is 
raised to O h . These sidewall temperatures are maintained 
thereafter. For  simplicity, we consider the case 0 o = (0 c + 0h)/2. 
Two kinds of thermal boundary conditions for the horizontal 
walls are specified: an insulated condition, and a linearly 
varying temperature condition 0 = 0 c + (0 h - Oc)y/d. 

The governing equations, written in vorticity (~) stream 
function (~) formulation are, in a properly nondimensionalized 
form (see e.g., Yamasaki and Irvinel°), 

~U c~V 
OX ~- ~ - - -  0 (1) 

~T ~T OT 1 [02T t~2T'x 
~.-I- U ~ - +  VOy pr  o ~ - + ~ 5 )  (2) 

O~, _ O~ ~ O T  2 
t + U0-X+ v ~ - = ~ i r o ~ + V  (~;) 

F02x OU 02~ OV 021"~ fOV OU'~l 

V2¢= - ~  (4) 

u= ~-, v= -~-~ (5) 

where the nondimensional quantities are defined as follows: 

x=X_ y=~ ,  u =  u v 
d'  vo/d, V= vo/d 

T= O-  0 o v o gflAOd 3 
P r o = - - ,  G r o = - -  (6) 

0h-- 0c' K v~ 
V t* 

VO t = d2/v 0 

In the above, the relevant fluid properties are kinematic 
viscosity v, thermal diffusivity K, and coefficient of volumetric 
expansion 9- The kinematic viscosity at the initial uniform 
temperature is denoted by %. The important reference 
nondimensional parameters are the Prandtl number Pro, the 
Grashof number Gro, and the Rayleigh number Ra o = Gr o Pr o. 
Note that dissipation has been neglected in the energy equation. 

The variability of viscosity is denoted by n, which is the 
viscosity ratio referred to the reference value v o. We adopt a 
simple exponential form proposed by Torrance and Turcotte :9 

n = exp( - CT) (7) 

Obviously, C = 0  corresponds to the constant-viscosity case. 
This exponential model for the viscosity-temperature relation 
describes the available experimental data reasonably well 
(Booker, 8 Yamasaki and Irvinet°). References 8-10 choose a 
form similar to that given by Equation 7. 

In accordance with the problem statement, the initial 
conditions are 

U =  V= T = 0  (8) 

The appropriate boundary conditions are 

U = V= 0 on all solid boundaries 

T = - 0 . 5  on Y=0,  T=0.5 on Y= 1 

~T 
- - = 0  on X = 0 ,  1 (adiabatic horizontal walls) 
~X 

T= Y-0 .5  on X = 0 ,  1 (conducting horizontal walls) (9) 

Our task is to solve the system of coupled differential equations 
(1)-(9). We obtained the numerical solutions to these equations 
by using the finite difference numerical methods originally 

N o t a t i o n  

C Viscosity variation parameter 
Cp Specific heat 
d Width of cavity 
Gr o Reference Grashof number, gflAOda/v2o 
k Thermal conductivity 
NU Average Nusselt number at boundary wall 
Pr Reference Prandtl number, Vo/K 
Q Heat flow at boundary wall 
Ra o Reference Rayleigh number, gflAOda/KVo 
t, t* Nondimensional, dimensional time 
T Nondimensional temperature 
u, v Velocity components 
U, V Nondimensional velocity components 
x, y Coordinates 
X, Y Nondimensional coordinates 

Greek 

0 
K 
V0 
V 

P 

symbols 
Coefficient of volumetric expansion 
Nondimensional vorticity 
Dimensional temperature 
Thermal diffusivity, k/pCp 
Reference kinematic viscosity 
Local kinematic viscosity 
Normalized kinematic viscosity, v/v o 
Density 
Nondimensional stream function 

Subscripts 
0 Reference value 
c Cold wall 
h Hot wall 
t Top wall 
b Bottom wall 
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developed by Wilkes and Churchill. 11 We integrated the 
equations at discrete time steps by the alternating direction 
implicit numerical procedures. For full details of numerical 
techniques, see Ref. 11. The mesh points used were typically 
21 x 21 to 26 x 26. We performed sensitivity tests to the grid size 
for several sample runs by repeating the calculations on finer 
grids. The results were found to be in satisfactory agreement 
with each other, providing credence to the mesh size that we had 
selected. As stated earlier, we confined our attention to the 
effects of variable viscosity. The cavity aspect ratio was fixed at 
unity, and the reference Prandtl number Pr o was set at 7.0. 
Numerical computations were executed by using several values 
of C in Equation 7 over a range of the reference Rayleigh 
number Ra o. 

Results and discussion 

At first we shall be concerned with the results obtained by using 
the adiabatic horizontal wall conditions. Figures 2 and 3 
illustrate the transient evolution of flow and temperature fields 
for a constant-viscosity fluid (C = 0) at two values of Ra o. These 
plots will serve as standards to assess the effects of a variable 
viscosity. Also, the results in Figures 2 and 3 are checked against 
the results of others who used different numerical techniques. 
This will verify the accuracy and reliability of the present 
numerical model. 

Figure 2, at a lower value of Rao, demonstrates that, 
immediately after the impulsive start, two secondary rolls 
appear inside the primary circulation. At small times, the 
convective motions have not fully developed. Therefore, in thin 
boundary layers on the vertical walls, the isotherms are crowded 

1 

Figure 2 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Ra0=3.5xlO 4, C=0. Adiabatic 
horizontal walls. Times are (a) t=0.003, (b) t=0.07, (c) t=1.5. 
Values for ~, in the figures are (a) ¢rna×=0.105, contour increment 
A¢=0.0175; (b) ~'rna×=l.8, Ag,=0.3; (c) ~,max=l.05, A~=0.175. 
Isotherms are, from left to right, -0 .4 ,  -0 .25,  -0 .1 ,0 .1 ,0 .25 ,  0.4 

Figure 3 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Ra0=3.5x l0  s, C=0. Adiabatic 
horizontal walls. Times are (a) t=0.003, (b) t=0.04, (c) t=1.5. 
Values for ~ in the figures are (a) ~bmax-0.9, contour increment 
A~=0.15; (b) ~,max=6.0, A~=I .0 ;  (c) ~ma×=2.1, A~=0.35. 
Isotherms are, from left to right, -0 .4 ,  -0 .25,  -0 .1 ,0 .1 ,0 .25 ,  0.4 

and approximately parallel to the vertical walls; this is 
indicative of the dominance of conduction. The bulk of the fluid 
is still at the initial temperature T = 0  (see Figure 2(a)). 

The flows subsequently grow in magnitude to their peak 
values, suggesting that the fluid is accelerating. At intermediate 
times, the two rolls merge into a single circulatory pattern. 
Owing to the intensified convective motions, the temperature 
field in the interior begins to be stratified in the vertical direction 
(see Figure 2(b)). After reaching the peak values, the fluid 
decelerates slightly and approaches the steady state. 

At large times, the flow tends slowly to the established final 
state; the convective circulatory pattern fills in much of the 
cavity. In the inviscid interior core, the predominant vertical 
stratification is discernible. The plots shown in Figure 2(c) can 
be taken to depict the steady state. Here, for computational 
purposes, the steady state will be defined as the state when the 
flow variables vary less than a prescribed amount over a 
physically meaningful time interval. For flows of large Rayleigh 
numbers, one significant time scale is the heatup time scale 
z~  Ra-1/4 (Patterson and Imberger, 1 HyunS'6). Therefore, we 
regard the steady state to have been achieved if the temporal 
variations of the flow variables are less than 0.1% over a time 
interval of 0.1Ra o ~/4. Additional discussion on the approach to 
the steady state will be given in connection with the behavior of 
the mean Nusselt numbers on the two vertical sidewalls. 

Figure 3 displays the results at higher Ra 0. The overall 
patterns of transient evolution are qualitatively similar to those 
shown in Figure 2. One notable difference is seen in the flow 
structure at large times. In Figure 3(c), the secondary rolls 
reappear, in contrast to the flow pattern shown in Figure 2(c). 
These features were also observed in previous studies (Elder 12). 
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i 

Figure 4 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Ra0=3.5xl04, C=3. Adiabatic 
horizontal walls. Times are (a) t=0.00004, (b) t=0.003, (c) t=0.07, 
(d) t = l  .5. Values for ff in the figures are (a) ~kma×=0.006, contour 
increment A~ =0.001 ; (b) I]/ma x =0.18, A~, =0.03; (c) 0.35, 0.7, 1.05, 
1.4, 1.75, 2.0; (d) ffrnsx=l.2, A~k=0.2. Isotherms are, from left to 
right, -0 .4 ,  -0 .25,  -0 .1 ,  0.1, 0.25, 0.4 

It is presumed that, at lower Rao, the relative importance of 
viscous diffusion outweighs the effect of the negative d T/~ Y near 
the center of the cavity; therefore, the development of the 
secondary rolls is retarded by the diffusive effects. The 
qualitative features shown in Figures 2 and 3 exemplify the 
unsteady convective process of a constant viscosity fluid at large 
Rayleigh numbers; these have been well documented (see, e.g., 
Wilkes and Churchill, 11 Kiiblbeck et alJ3). 

We now examine the explicit effect of a temperature- 
dependent viscosity. With the assumed form of Equation 7, 
numerical solutions were generated using C =  1,3,7 at two 
values of Rao.The viscosity is a maximum at the cold vertical 
wall and a minimum at the hot vertical wall. 

The results of the computations for a strongly variable 
viscosity (C = 3) are shown in Figures 4 and 5. Comparisons of 
the circulation patterns and isotherms for C = 0  and those 
described in Figures 4 and 5 reveal considerable changes. When 
C:~0, near the hot wall, viscosity is lowered and the flow 
intensifies; near the cold wall, viscosity increases and the flow is 
suppressed. However, the former outweighs the latter, and the 
global impact is to enhance the overall convective activities in 
the cavity. Clearly, the flow is concentrated in the region of low 
viscosity. At a lower value of Ra o, the location of ~kma x moves 

toward the region of lowest viscosity. Near the upper right 
corner of the cavity, the temperature is highest owing to the 
rising fluid in the boundary layer on the hot vertical wall; this is 
the region of lowest viscosity. The isotherms near the cold wall 
in Figures 4(c) and 5(c) tend to be more nearly parallel than 
those near the hot wall. This reflects the fact that conduction has 
appreciable influence in the region of high viscosity. The general 
characteristics described above are representative of all the 
results obtained by using other nonzero values of C, and these 
results are not reproduced here. 

At a large value of Rao (see Figure 5), as for a constant- 
viscosity fluid (see Figure 3), the secondary rolls merge at small 
times and reappear at large times. A perusal of the entire set of 
the results indicates that as C increases, the merging of the 
secondary rolls takes place earlier, and the re-formation of the 
secondary rolls is delayed to a still later time. 

As Ra o increases, the thickness of the boundary layers near 
the vertical walls decreases. Large positive values of dT/dY are 
seen near the upper region of the cold wall and the lower region 
of the hot wall. The convective motions are vigorous in these 
regions. As C increases, the magnitude of vorticity near the hot 
wall exceeds that near the cold wall. A larger secondary roll is 
apparent near the hot wall (see Figure 5(d)). 

~(a) ! 
~(b) I 

Figure 5 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Ra0=3.5x l0  s, C=3. Adiabatic 
horizontal walls. Times are (a) t=0.O0004, (b) t=0.003, (c) t=0.02, 
(d) t=1.5. Values for ~k in the figures are (a) ~kmax=0.051, contour 
increment A~=0.0085; (b) ~max=l.5, A~=0.25; (c) ~max=6 .0 ,  
A~k=1.0; (d) 0.4, 0.8, 1.2, 1.6, 2.0, 2.15. Isotherms are, from left to 
right, - 0.4, - 0.25, - 0.1, 0.1,0.25, 0.4 
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T a b l e  I Maximum values of the stream function I//ma x. Adiabatic 
horizontal wall conditions 

t=0.07 Steady state 

Ra0 = 3.5 x 104 

Rao = 3.5 × 105 

C = 0 1.832 1.155 
1 1.885 1.165 
3 2.112 1.240 
7 2.621 1.549 
0 3.864 2.135 
1 4.039 2.156 
3 4.256 2.256 
7 4.677 2.710 

(c) ~ ~ ~ 1  

Figure 6 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Rao=3.5xl04, C=O. Conducting 
horizontal walls. Times are (a) t=O.O03, (b) t=O.07, (c) t=1.5. 
Values for ~k in the figures are (a) ~bmax=0.105, contour increment 
A~=0.0175; (b) 0.35, 0.7, 1.05, 1.4, 1.75, 2.0; (c) 0.25, 0.5, 0.75, 
1.0, 1.25, 1.55. Isotherms are, from left to right, - 0.4, - 0.25, - 0.1, 
0.1, 0.25, 0.4 

In summary, a systematic inspection of the results points to 
the following important observations. In a variable-viscosity 
fluid, the convective motions inside the cavity are more vigorous 
than for a constant-viscosity fluid. The flow enhancement due to 
the decrease of viscosity near the hot wall surpasses the flow 
suppression due to the increase of viscosity near the cold wall. 
This effect is better manifested by comparing IPmax , which is 
listed in Table 1. 

We next turn to the cases when the horizontal walls are highly 
conducting; the temperatures on the horizontal walls are linearly 
varying between the two vertical isothermal walls. As pointed 
out by Briggs and Jones, 14 this conducting-wall boundary 
condition has received less attention in the literature, although 
the problem is inherently of much relevance to technological 
applications. 

Figures 6 and 7 illustrate the plots of stream functions and 
isotherms for a constant-viscosity fluid. Comparing these results 

with those for the case of insulated walls, we see that differences 
are more apparent in the thermal structures than in the flow 
patterns. At small times, conduction layers are formed on the 
horizontal walls as well as on the vertical walls (see Figures 
6(a) and 7(a)). The flow intensifies to its peak magnitude at 
intermediate times. The flow decreases in magnitude slightly 
afterward, and it tends smoothly to the steady state. The heat 
transfer between the fluid and the horizontal walls augments the 
overall convective activities. In the steady state, the interior 
core, in which a predominant vertical stratification exists, 
occupies a smaller portion of the cavity than for the case of 
insulating walls. Considerable portions of the cavity near the 
horizontal walls are characterized by an appreciable horizontal 
stratification, owing to the imposed horizontal wall boundary 
conditions (see Figures 6(c) and 7(c)). 

Figures 8 and 9 depict the stream patterns and isotherms for a 
strongly variable viscosity fluid. The concentration of flow in the 
regions of low viscosity is discernible. At large times, the 
isotherms in the regions close to the solid boundaries point to 
the existence of patches of gravitationally unstable con- 
figuration; (i.e., a cold fluid overlies hot fluid (see Figure 9(d)). 

Since the viscosity varies by substantial margins in the cavity, 
Ra o based on v o, may not fully characterize the localized 
phenomena. Especially in the upper region near the hot wall, 
viscosity is the lowest; therefore, the effective Rayleigh number 
is very large. Accordingly, the local behavior in that region may 
be characteristic of the convection at a Rayleigh number higher 
than Ra o. 

In summary, the highly conducting horizontal walls facilitate 
the global convective activities in the cavity. A comparison of 

Figure 7 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Rao=3.5xl05, C=O. Conducting 
horizontal walls. Times are (a) t=O.O03, (b) t=O.02, (c) t=1.5. 
Values for ~k in the figures are (a) ~max=O.9, con tou r  increment 
A~b =0.16; (b) ~max=4.8, AI~ =0.8; (C) I,kmax = 3.0, AI~ =0.5. Isotherms 
are, from left to right, -0.4, -0.25, -0.1, 0.1, 0.25, 0.4 
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~ (a) 

(d) / ~ ) l l  

Figure 8 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Ra0=3.5xl04, C=3. Conducting 
horizontal walls. Times are (a) t=0.00004, (b) t=0.003, (c) t=0.07, 
(d) t=1.5. Values for ~ in the figures are (a) ffmax=0.006, contour 
increment A~k=0.001; (b) ~max=0.18, A~=0.03; (c) ~rnax=2.1, 
A~k =0.35; (d) 0.27, 0.54, 0.81, 1.08, 1.35, 1.6. Isotherms are, from 
left to right, - 0.4, - 0.25, - 0.1, 0.1, 0.25, 0.4 

the values of ~kma x for the insulating walls (Table 1) and for the 
conducting walls (Table 2) clearly bears this out. 

Figure 10 demonstrates a typical time history of the velocity 
components. As stated earlier, the fluid accelerates from the 
initial motionless state to the peak value; afterward, the fluid 
decelerates slightly and proceeds smoothly to its steady-state 
limit. The time span over which the fluid motion, starting from 
zero, tends to the steady state (i.e., for example, the velocity 
reaches within 10 % of the steady-state value) is significant in the 
transient adjustment process. This will be a measure of the time 
over which the convective motions have been substantially 
adjusted. Patterson and Imberger ~ and Hyun s'6 showed that 
this heatup time was scaled with O(Ra-~/4). The exemplary 
time-history plots in Figure 10 are consistent with this scaling. 

The variations of the mean heat transfer coefficient NU at the 
cavity walls are depicted in Figures 11 and 12. Here, the Nusselt 
number NU is computed as 

for the vertical walls, and 

1 c~T 

for the horizontal walls in the case of conducting walls. 
Figure 11 presents the results for the case of insulated 

horizontal walls. For  a flow with constant viscosity (see Figure 
l l(a)), the influence of convection becomes effective only at 
some small time after the impulsive start. As expounded by 
Wilkes and Churchill,11 this is due to the lapse of time occurring 
while the fluid travels through the cavity between the two 
vertical walls. It is important to recognize that for a constant- 
viscosity fluid, the Nusselt numbers at the two vertical walls are 
identical at all times; no heat is accumulated in the cavity during 
the entire process. This is anticipated, since no energy 
dissipation or production has been included in the formulation. 
As is clear in Figure 1 l(f), the steady-state isotherm for T= 0 for 
C = 0  divides the cavity evenly; T > 0  in the upper right region 
and T < 0  in the lower left region. These salient features for a 
constant-viscosity fluid were captured previously. 1~ 

The Nusselt numbers at the vertical walls are profoundly 
affected by the effect of variable viscosity. As C increases, NU at 
the hot wall is significantly larger than NU at the cold wall 
during the transient phase. Near the hot wall, viscosity is 

Figure 9 Plots of stream function (left column) and isotherms 
(right column) in the cavity. Rao=3.5×10 s, C=3. Conducting 
horizontal walls. Times are (a) t=0.00004, (b) t=0.003, (c) t=0.07, 
(d) t=1.5. Values for ~ in the figures are (a) ~max=0.051, contour 
increment A~k=0.0085; (b) ~max=l .5, A~k=0.25; (c) ~max=4.2, 
A~k =0.7; (d) 0.56, 1.12, 1.68, 2.24, 2.7, 3.1. Isotherms are, from left 
to right, -0.4, -0.25, -0.1, 0.1, 0.25, 0.4 
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reduced substantially; convection sets in earlier, and the 
dominance of convection prevails in a larger region than for 
C=0 .  Near the cold wall, the opposite effects take hold. 
However, the former outweighs the latter. In effect, the cavity 
can be regarded as a receiver of a net heat input during the 
transient phase. This net heat added to the cavity during the 
transient phase has enabled the steady state to sustain the 
thermal structure shown in Figure 1 l(f). Only at the steady state 
the flow becomes settled, and the Nusselt numbers at the two 
vertical walls are equalized. In the steady state, the upper right 
region (T>0)  is larger than the lower left region (T<0). In 
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o ~ . ,  ,,o i~ 
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Figure 10 Representative time history of the velocities for 
Ra0=3.5xlO 4, C=O. (a) Vertical velocity at X=O.5, Y=0.95; (b) 
horizontal velocity at X=0.95, Y=O.5; . . . . .  : adiabatic horizontal 
walls; conducting horizontal walls 
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Figure 11 Variation of the mean Nusselt numbers. (a) C=0; (b) 
C=1; (c) C=3; (d) C=7; (e) heat transfer along the walls; (f) the 
locations of the isotherm for T=O at t = 1.5. Ra0=3.5 x 10 s. Adiabatic 
horizontal walls; . . . . . .  : at cold wall; : at hot wall 

Table 2 Maximum values of the stream function I~max. 
Conducting horizontal wall conditions 

t=O.07 Steady state 

C = 0 2.043 1.617 
Ra0=3.5 x 104 1 2.090 1.634 

3 2.294 1.71 0 
7 2.708 2.168 

0 4.006 3.069 
1 4.202 3.088 

Ra0 =3.5 x 105 3 4.568 3.189 
7 5.317 3.918 
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Variation of the mean Nusselt numbers. (a) C=0; (b) 
C=1; (c) C=3; (d) C=7; (e) heat transfer along the walls; (f) the 
locations of the isotherm for T=O at t=1.5. Ra0=3.5xlO 5. 
Conducting horizontal walls; : at cold wall; : at hot 
wall; . . . . . .  : at top wall; . . . . . . . .  : at bottom wall 

essence, the global heat content in the cavity at the steady state is 
larger than that of the initial state. 

Figure 12 is for the case of conducting horizontal walls. The 
fluid exchanges heat along the four boundaries of the cavity, as 
shown in Figure 12(e). For a constant-viscosity fluid, Qh = Qc 
and Qb=Qt at all times; there is no net heat addition to the 
cavity. The transient behavior is qualitatively similar to that in 
Figure 1 l(a). 

The effect of variable viscosity affects measurably the Nusselt 
numbers at the four boundary walls. As C increases, convective 
activities are intensified in the region of low viscosity and 
suppressed in the region of high viscosity. During the transient 
phase, the heat inflow to the cavity, Qh+Qb, is larger than the 
heat outflow from the cavity, Qc + Qt, as shown in Figures 12(b), 
(c), (d). At the steady state, Qh+Qb=Qc+Qt, implying that no 
net heat is being added to the cavity. Therefore, during the 
transient phase, there is a net heat input to the cavity. 
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Accordingly, the heat content  in the entire cavity at the steady 
state is larger than that of the initial state. As seen in Figure 
12(f), in the steady state the right region of the cavity where T > 0 
is larger than the left region where T < 0. 

Conclusion 

Numerical  solutions have been obtained to delineate the effect 
of variable viscosity on the unsteady process in a square cavity 
heated differentially at the vertical walls. 

With a variable-viscosity fluid, the convective activities are 
facilitated near the hot wall and suppressed near the cold wall. 
However ,  the overall impact is to enhance the flow and heat 
transfer in the cavity. This effect is more pronounced for 
conducting horizontal walls. 

The flow is substantially adjusted to its steady state features 
within a heatup time scale O(Ra-1/4). For  a constant-viscosity 
fluid, the Nusselt numbers at the boundary walls are identical at 
all times. Fo r  a variable-viscosity fluid, however, convection is 
more vigorous near the hot wall. During the transient phase, for 
insulating horizontal walls, the heat inflow to the cavity at the 
hot vertical wall exceeds the heat outflow at the cold vertical 
wall. Therefore, the cavity acts as a receiver of net heat input in a 
variable-viscosity fluid. For  conducting horizontal walls, during 
the transient phase, the heat inflow through the hot vertical wall 
and the bot tom wall is larger than the heat outflow through the 
cold vertical wall and the top wall. 
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